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Abstract

Bilevel multiobjective optimization is a field of mathemati-
cal programming representing a nested hierarchical decision
making process, with one or more decision makers at each
level. These problems appear in many practical applications,
solving tasks such as optimal control, process optimization,
governmental and game playing strategy development, and
transportation. Uncertainty cannot be ignored in these prac-
tical problems. We present a hybrid algorithm called BAM-
BINO, based on batch Bayesian approach via expected hyper-
volume improvement, that can handle uncertainty in the up-
per level. Three popular modified benchmark problems with
multiple dimensions are used to evaluate its performance un-
der objective noise compared to two popular algorithms in the
literature. The results show that BAMBINO is computation-
ally efficient and able to handle upper level uncertainty. We
also evaluate the effect of batch size on performance.

Introduction
Hierarchical decision making has an extensive history, in
Game Theory as first realized by von Stackelberg (Stackel-
berg 1952) and in the subfield of mathematical programming
called bilevel optimization (Bracken and McGill 1973). A
bilevel optimization problem contains a nested inner opti-
mization problem which is a constraint of an outer opti-
mization problem. The outer optimization task is referred
to as the upper level or leader while the inner optimization
problem is referred as the lower level or follower. Existing
bilevel research has mainly focused on single-objective lead-
ers and followers. Multiobjective bilevel optimization is rel-
atively neglected, but there is work in the fields of classical
optimisation (Eichfelder 2010) and evolutionary computa-
tion (Islam, Singh, and Ray 2016).

Our work focuses on the special case of multiobjec-
tive bilevel problems in which the leader has noisy objec-
tives. We assume that the follower is free to choose any
feasible solution from a Pareto-optimal set. We use batch
Bayesian optimization to improve efficiency, approximating
the leader’s Pareto-front using fewer function evaluations
than existing works. We also present a black-box approach
to the noisy leader’s objectives for handling the uncertainty
during decision making.
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Hierarchical decision making under uncertainty with
noisy objectives becomes more interesting in a bilevel struc-
ture. The follower can observe the leader’s decisions but
the leader may have no idea how the follower is go-
ing to respond. Previously observed decisions are there-
fore important. Uncertainty in the objective also compli-
cates the leader’s decision making, and our algorithm uses a
specifically designed acquisition function called qNEHVI to
maximize expected hypervolume improvement under noisy
objectives. We call our algorithm BAMBINO (Bayesian
Approach for Multiobjective Bilevel Problems with Noisy
Objectives). To evaluate its performance we consider three
multi-dimensional test problems from two different suites
of multiobjective bilevel optimization problems. Both ex-
amples illustrate the importance of taking uncertainty into
account.

Motivation
Most studies in the multiobjective bilevel optimization lit-
erature focus on solving the optimization problem without
addressing the impact of uncertainty. In practical problems,
noise in the leader’s objectives might represent environmen-
tal uncertainty, for example in a meta-learning regime (Al-
Shedivat et al. 2017) that can be mathematically formulated
as bilevel programming (Franceschi et al. 2018). As another
example, a government might need to prevent terrorist at-
tacks using information from unreliable sources. Yet another
example occurs in computing optimal recovery policies for
financial markets (Mannino, Bernt, and Dahl 2012), using
bilevel optimization with objective uncertainties caused by
several uncontrollable parameters.

Bilevel optimization problems are computationally ex-
pensive to solve because of their nested structure, and they
become even more complex when there are multiple objec-
tives and uncertainty (possibly at both levels). The main pur-
pose of our work is to improve the efficiency of solving mul-
tiobjective bilevel optimization while handling leader objec-
tive uncertainties.

Background
We now provide some necessary background.

Bilevel Multiobjective Optimization Problems (BMOP).
Because of the nature of multiobjective optimization prob-



Algorithm 1: BAMBINO

Inputs: Fu(xu,xl) : xu ∈ Xu,xl ∈ Xl,
Batch points per epoch Q,
Total epoch N,
Reference point

1: xl : Find the Best Lower Level response as parameters
with NSGA-II algorithm,

2: Initial decision data set with the objective noise
D = {xui

,Fu(xui
,xli), (Σi)}ni=1 with size of n,

3: Initialize the GP model with the observations and the
objective noise

4: for i = 0 : N do
5: Suggest new q-batch points by optimizing qNEHVI
6: for j = 0 : q do
7: For each upper-level decision xu, find optimal x∗

l
by applying the NSGA-II

8: Calculate fitness scores with noise Fu(xu,x
∗
l ) + ξ

9: end for
10: Update the data set D with new observations
11: end for
12: Update GP model with new observations
13: Return Pareto-front F∗

u and (xu,x
∗
l )

lems, only Pareto-optimal solutions at the lower level can be
considered as feasible solutions for the upper level problem.
We denote the upper level decision variables by xu ∈ Xu ⊂
Rn and the lower level decision variables by xl ∈ Xl ⊂ Rm.
The lower level problem is solved with respect to xl while
the upper level problem is solved with respect to both deci-
sions x = (xu, xl). Each xu corresponds to a different lower
level optimization problem with a different Pareto-front de-
cision set. The lower level Pareto-front is defined as P ∗ =
{f(xu,xl) : xl ∈ Xl,∄x′

l ∈ Xl s.t. f(x′) ≻ f(x)} where
f(x′) ≻ f(x) denotes f(x′) dominates f(x). The Pareto-
optimal decision set is X∗

l = {x∗
l : f(xu,x

∗
l ) ∈ P ∗}. The

definition of bilevel multiobjective problem with vector val-
ued decision variables xu and xl is given by

minimize
xu,xl

{F1(xu,xl), ..., Fp(xu,xl)}

subject to
xl ∈ argmin

xl

{f1(xu,xl), ..., fq(xu,xl);

gj(xu,xl) ≤ 0, j = 1, 2, . . . , J}
Gk(xu,xl) ≤ 0, k = 1, 2, . . . ,K

(1)

where F : Rn × Rm → Rp represents the upper level
function and f : Rn × Rm → Rq represents the lower
level function of the bilevel problem. Upper level and lower
level constraints are defined by Gk : Xu × Xl → R and
gj : Xu ×Xl → R for k = 1, . . . ,K and j = 1, . . . , J .

Bayesian Optimization (BO). BO is a sample-efficient
approach that has demonstrated great potential in approxi-
mating a global optimum with a relatively small number of
function evaluations. It uses a probabilistic surrogate model
to make decisions by balancing exploration and exploitation
(Shahriari et al. 2016). Gaussian process (GP) is a common

surrogate model with a flexible and non-parametric form.
GP provides a posterior distribution for a decision point x
in the search space by capturing the prior belief about the
performances of unknown objective function, using a mean
function µ(x) and a kernel function k(xi,xj). BO uses an
acquisition function to decide which point to choose next.
The acquisition function specifies the value of the next point
by using the surrogate’s predictive distribution at the current
point. We assume that the black-box function f is expensive
to evaluate, but that optimizing the acquisition function is
relatively cheap and fast.

Multiobjective Bayesian optimization (MOBO) combines
the Bayesian surrogate model and an acquisition function
specifically designed for multiobjective optimization prob-
lems such as qNEHVI (Daulton, Balandat, and Bakshy
2021). This is a hypervolume improvement based acquisi-
tion function that works well for noisy multiobjective opti-
mization problems.

Method
We consider a case that is crucial in practice, in which
the leader must make decisions under uncertainty based
on noisy observations Fi = f(xui

,xli) + ξi where ξi ∼
N (0,Σi) and Σi is the noise covariance and xu,xl are up-
per and lower decision variables respectively. We reformu-
late leader’s objective with noisy observations as

minimize
xu,xl

{F1(xu,xl) + ξ1, ..., Fp(xu,xl) + ξp} (2)

where ξp ∼ N (0,Σp). The hypervolume indicator measures
the volume of space between the non-dominated front and
a reference point, which we assume is known by the up-
per level decision maker. The selection of reference point is
tricky. In this work it is chosen to be an extreme point of the
Pareto front, because reference points should be dominated
by all Pareto-optimal solutions. Hypervolume improvement
of a set of points P ′ is defined as HV I(P ′|P, r) = HV (P∪
P ′|r) − HV (P|r) where P represents the Pareto front and
r the reference point. Given observations of the upper level
decision making process, the GP surrogate model provides
us with a posterior distribution over the upper level func-
tion values for each observation. These values can be used
to compute the expected hypervolume improvement acqui-
sition function defined by

αehvi(xu)|P = E[HV I(Fu|P)] (3)

So the expected hypervolume improvement iterates over
the posterior distribution, an approach that worked well in
(Daulton, Balandat, and Bakshy 2021).

After n observations of the leader’s decisions and the
follower’s response, the posterior distribution can be de-
fined by the conditional probability p(F(xun

,xln)|Dn)
of the leader’s objective values given decision vari-
ables (xun

,xln) based on noisy observations Dn =
{xui

,Fi(xui
,xli), (Σi)}ni=1. NEHVI is defined as

αNEHVI(xu) =

∫
αehvi(xu|Pn)p(F|Dn)dF (4)
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Figure 1: Hypervolume difference graph (log scale) with dif-
ferent batch sizes (q = 1, q = 2, q = 4, q = 8) for Exam-
ple 1 with 15 (top-left) and 20 (bottom-left) dimensions, for
Example 2 with 10 (top-middle) and 20 (bottom-middle) di-
mensions, for Example 3 with 10 (top-right) and 20 (bottom-
right) dimensions.

where Pn denotes the Pareto-front optimal decision set over
the leader’s objectives Fn. The aim is to improve the effi-
ciency of the optimization, and the handling of noise in the
leader’s objective, by using the approach above and reformu-
lating the bilevel multiobjective optimization problem. The
algorithm details can be found in Algorithm 1.

Numerical Experiments
The test problems are selected from the literature (Deb and
Sinha 2009b), with the aim of testing scalability in terms
of decision variable dimensionality. The results are com-
pared with state-of-art evolutionary algorithms m-BLEAQ
(Sinha et al. 2016) and H-BLEMO (Deb and Sinha 2010).
The Pareto-front is independent of the parameters.

Performance Metrics. We compare our results in terms
of upper level function evaluations (FE) for the efficiency of
the algorithm. Hypervolume improvement (HV) (Fonseca,
Paquete, and Lopez-Ibanez 2006) and inverted generational
distance (IGD) are also used to evaluate the success of ap-
proximation to Pareto-fronts, in terms of convergence and
diversity. HV measures the volume of the space between the
non-dominated front obtained and a reference point. IGD
calculates the sum of the distances from each point of the
true Pareto-front to the nearest point of the non-dominated
set found by the algorithm. Therefore, smaller IGD value
means approximated points are closer to the Pareto-front of
the problem.

Parameters. In our experiments we use a number of iter-
ations N = 50, and compute median FE from 21 runs. We
use the independent GP model with Matern52 kernel and
fit the GP by maximizing the marginal log-likelihood. The
method initialized with 2×(d+1) Sobol points where d rep-
resents the dimension of the problem to construct the initial
GP model. All experiments are conducted using BoTorch
(Balandat et al. 2019) library. We solved the follower’s prob-

lem with the popular non-dominated sorted genetic algo-
rithm (NSGA-II) (Deb et al. 2002) and choose the popula-
tion size 100 and number of generations 200. We choose the
follower’s decisions from the obtained Pareto-front at ran-
dom, as all solutions in the Pareto-front are feasible.

Example 1. The first example is a bi-objective problem
that is scalable in terms of the number of follower decision
variables. We choose K = 14 and K = 19, giving 15 and 20
follower variables respectively, with 1 leader decision vari-
able. We choose the reference point required for measuring
hypervolume improvement to be (1.0, 0.5). The formulation
of the problem is given by

Min
(xu,xl)

F(xu,xl) =


(xl1 − 1)2 +

∑K
i=2 xli+

(xu)
2 + ξ

(xl1 − 1)2 +
∑K

i=2 xli+
(xu − 1)2 + ξ


subject to

xl ∈ argmin
xl

f(xu,xl) =

(
xl1 +

∑K
i=2 x

2
li

xl1 − xu +
∑K

i=2 x
2
li

)
− 1 ≤ (xu, xl1 , xl2 , ..., xlK ) ≤ 2

ξ ∼ N (0,Σξ), Σξ =

[
0.01 0
0 0.01

]
(5)

The Pareto-optimal decision sets for this specific bilevel
decision-making problem can be found in (Sinha et al.
2016).

Example 2. The second test problem is the modified test
problem with 10 and 20 variable instances. We choose the
required reference point to be (1.1, 1.1). The formulation of
the problem is given by:

Min
(xu,xl)

F(xu,xl) =
(1 + r − cos(απxu1

)) +
∑K

j=2(xuj
− j−1

2 )2+

τ
∑K

i=2(xli − xui)
2 − r cos(γ π

2

xl1

xu1
) + ξ

(1 + r − sin(απxu1)) +
∑K

j=2(xuj −
j−1
2 )2+

τ
∑

i=2 K(xli − xui
)2 − r sin(γ π

2

xl1

xu1
+ ξ)


subject to
xl ∈ argmin

xl

f(xu,xl) =


x2
l1
+
∑K

i=2(xli − xui
)2+∑K

i=2 10(1− cos( π
K (xli − xui)) + ξ∑K

i=2(xli − xui
)2+∑K

i=2 10| sin(
π
K (xli − xui

))|+ ξ


xli ∈ [−K,K], i = 1, . . . ,K

xu1 ∈ [1, 4], xuj ∈ [−K,K], j = 2, . . . ,K

ξ ∼ N (0,Σξ), Σξ =

[
0.25 0
0 0.16

]
(6)

The Pareto-front for a given leader is defined as a circle of
radius (1 + r) with centre ((1 + r), (1 + r)). We choose



K = 5 for our experiments with parameters r = 0.1, τ = 1
and α = 1, following (Sinha et al. 2016) so that our results
can be compared with those for m-BLEAQ and H-BLEMO.

Example 3. The third test problem is the modified test
problem with 10 and 20 variable instances. We choose the
required reference point (0.8, 0.0) for measuring the hyper-
volume improvement during the optimization. The formula-
tion of the problem is given by:

Min
(xu,xl)

F(xu,xl) =
v1(xu1

) +
∑K

j=2(x
2
uj

+ 10(1− cos( π
Kxui

))+

τ
∑K

i=2(xli − xui)
2 − r cos(γ π

2

xl1

xu1
) + ξ

v2(xu1
) +

∑K
j=2(x

2
uj

+ 10(1− cos( π
Kxui

))+

τ
∑K

i=2(xli − xui)
2 − r sin(γ π

2

xl1

xu1
) + ξ


where

v1(xu1) =


cos(0.2π)xu1

+

sin(0.2π)
√
|0.02 sin(5πxu1)|,

for 0 ≤ xu1
≤ 1.

xu1
− (1− cos(0.2π)), for xu1

≥ 1.

v2(xu1
) =


− sin(0.2π)xu1+

cos(0.2π)
√
|0.02 sin(5πxu1

)|,
for 0 ≤ xu1 ≤ 1.

0.01(xu1
− 1)− sin(0.2π), for xu1

≥ 1.

subject to
xl ∈ argmin

xl

f(xu,xl) =

(
x2
l1
+
∑K

i=2(xli − xui)
2 + ξ∑K

i=2 i(xli − xui
)2 + ξ

)
xli ∈ [−K,K], i = 1, . . . ,K

xu1
∈ [0.001,K], xuj

∈ [−K,K], j = 2, . . . ,K

ξ ∼ N (0,Σξ), Σξ =

[
0.09 0
0 0.09

]
(7)

Details on the Pareto-optimal solutions are given in (Deb
and Sinha 2009a).

Results and Discussion
The performance of BAMBINO is compared with that of
m-BLEAQ and H-BLEMO in Table 1, showing compu-
tational expense and convergence. The FE is calculated
by Ninitial + (Nbatch ×Niter ×Nrestarts) for the leader
problem, where Ninitial is the number of initial deci-
sions for starting the algorithm. We choose it to be 2 ×
(d + 1) where d is dimensions of the decision vari-
able. We run the experiment for different batch numbers
q = 1 , q = 2 , q = 4 , q = 8 to test the effect on perfor-
mance. The HV difference is shown in Figure 1 for 15 and
20 variables, and 10 variables for Examples 1 and 2 respec-
tively. Because of lack of information in the reference paper,

we could not obtain the FE results for Example 1 with 20
variables.

Example 1. We can see from the Table 1 that the required
upper level FE is significantly lower, while the algorithm ap-
proximates successfully to the Pareto-front while handling
the uncertainty at leader’s objective. For 15 variables BAM-
BINO achieves ≈ %38 improvement in terms of FE com-
pared to m-BLEAQ and ≈ %89 compared to H-BLEMO.
The IGD values in Table 1 for 15 and 20 variables show that
BAMBINO successfully approximates to the Pareto-front of
the problem while handling the uncertainty of leader’s ob-
jective for both. We show the HV difference between Pareto-
front solutions and approximated BAMBINO decisions al-
gorithm in Figure 1. Again we tried different batch sizes for
the experiment, and it can be seen that batch number of 8 is
best for this specific example at both dimensions. We could
not compare the 20 dimensional version of the problem with
the selected algorithms because of the lack of information in
(Sinha et al. 2016).

Example 2. Table 1 shows that BAMBINO obtains the
best IGD results compared to the other algorithms. In terms
of FE it significantly improves the state of the art, with
≈ %81 improvement for 10 variables and ≈ %88 improve-
ment for 20 variables compared to m-BLEAQ. We also show
the HV difference in Figure 1 and we can observe that, for
this specific example, the batch number of 8 is the best se-
lection for both 10 and 20 dimensional version.

Example 3. Table 1 shows that BAMBINO obtains the
best IGD value compared to m-BLEAQ and H-BLEMO
while improving efficiency in terms of FE: ≈ 84% and
≈ 97% with 10 variables, and ≈ 89% and ≈ 98% with
20 variables. Figure 1shows that batch size q = 8 gives best
results. In summary, BAMBINO is successful on fairly high-
dimensional problems, handling noisy objectives with less
computational cost.

Noise in leader objective makes the problem harder to
solve but more realistic for modelling practical problems,
because of real-world uncertainty. We show the proposed
BAMBINO algorithm works well on these test benchmark
problems. We believe that BAMBINO can be applied to
several practical bilevel problems applied successfully in
machine learning community such as image classification
(Mounsaveng et al. 2020), deep learning (Han et al. 2022),
neural networks (Li and Zhang 2021), neural achitecture
search and hyperparameter optimization (Liu et al. 2021).

Conclusions
In this paper we discussed bilevel multiobjective optimiza-
tion under upper level uncertainty, and presented a hybrid
algorithm called BAMBINO, based on batch Bayesian op-
timization with hypervolume improvement. We ran experi-
ments using three benchmark problems, and BAMBINO per-
formed very competitively in terms of computational effi-
ciency and convergence. We also showed how batch size
selection affects performance in terms of hypervolume im-
provement.



Number of
Variables

BAMBINO m-BLEAQ H-BLEMO

IGD FE IGD FE IGD FE

Example 1 15 0.0044 4032 0.0013 6,464 0.0046 39,818

Example 2 10 0.0051 4022 0.0069 22,223 0.0134 106,003

Example 3 10 0.0076 4022 0.0079 25,364 0.0134 132,907

Example 1 20 0.0105 4042 - - - -

Example 2 20 0.1032 4042 0.0435 34,110 0.1106 191,357

Example 3 20 0.0924 4042 0.0623 36,439 0.1321 216,083

Table 1: FE and IGD values for the examples with the number of variable dimensions.
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